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We present a theoretical treatment of the proposal for creating maximally entangled
states of many particles in spin-1 Bose–Einstein condensates (BECs) by applying a
single atom Raman transition [You. L. (2003). Physical Review Letters 90, 030402].
It is shown that the three-mode model suggested by You can be further reduced to an
efficient two-mode one by a simple method. We also suggest a scheme for generating
the atom-atom continuous-variable entangled states in this system.
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1. INTRODUCTION

Recently, quantum entanglement, entanglement in short, has been used to
perform many useful works in quantum information processing (Loyd, 1993;
Bennett and Wiesner, 1992; Bennett et al., 1993; Cleve et al., 1999). The creation
and manipulation of the many particles entangled states is of significant interest,
since the whole field of the quantum computation and quantum information science
is based on such a ability. Methods for creating entangled states have been found
for various physical systems, including nonlinear optics, ion traps, cavity quantum
electrodynamics, and nuclear magnetic resonance Nielsen and Chuang (2000). On
the other hand, the study of the entanglement characteristics of various interacting
many-body system has also given exciting new insight into fundamental aspects
of quantum physics.

The experimental observation of Bose–Einstein condensates (BECs) opened
a new prospect in the generation of the entangled states and the implementation
of quantum information precessing. The feature of the long coherence time also
makes proposals for engineering many particles entanglement feasible. There have
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been several proposals for controlling and engineering many particle entangled
states by using a weakly interacting BEC with internal degree of free or confined in
a double-well potential. For example, by appropriately controlling the interaction
between atoms, the ground state can become an entangled state in a weakly coupled
double-well potential Cirac et al. (1998); Steel and Collett (1998); Search et al.
(2001). It was also shown that by its nature every BEC is in a highly entangled
state Simon (2002); Hines et al. (2003). Sørensen et al. suggested creating massive
entangled spin squeezed state from a two-component condensate using the inherent
atom-atom interaction Sørensen et al. (2001). In Ruostekoski et al. (1998), the
authors proposed a method for creating Schrödinger cat states in BECs by means
of scattering light from two moving with oppositive velocities. Moreover, by
controlling the dynamics, the system of the two-component BECs can evolve into a
Schrödinger cat state starting from certain initial states Gordon and Savage (1999);
Helmerson and You (2001); Micheli et al. (2003); You (2003); Gerry and Campos
(2003). Latterly, spin-exchange interaction of a spinor condensate Stenger et al.
(1998); Barrett et al. (2001) was also proposed as a candidate for generating pairs of
atom. Comparing to the above-mentioned system, a spinor BEC has richer physics,
although the two-component BECs can be viewed as quasi-spin-1/2. Coherent
spin-exchange collisions are used to create an entangled state between atoms with
hyperfine spin state +1 and −1 for an initial condensate in atomic hyperfine
spin state 0 without the need of light fields Pu and Meystre (2000); Duan et al.
(2000). The work of Duan et al. further showed that the three-mode entanglement
can be generated in the spin−1 BECs by free dynamical evolution with properly
initial states Duan et al. (2002). More recently, a protocol was suggested to create
maximally entangled states in such a spin−1 BEC by driving a single atom Raman
transition using the classical laser in the Mott insulator state You (2003). In this
scheme, maximally entangled pair, triplets, and quartiles were considered between
atoms with hyperfine states −1 and +1. But the work involves a single optical
well and is limited to a small number of atom. In the terms of the idea of a
quantum Zeno subspace Facchi and Pascazio (2002), the underlying mechanism
for this protocol can be rather conveniently understood and can be extended to
larger number of condensed atoms Zhang and You (2003). In fact, the authors
retorted to the concept of the quantum Zeno subspace to reduce the three-mode
Hamiltonian to an extensively studied two-mode one, which is known to generate
maximally entangled state. Subsequently, Zou et al. presented further analysis
of the model and showed that in strong coupling limit the model can be greatly
simplified Pahlke and Mathis (2004). Pahlke and Mathis (2004) A scheme for how
to generate the entangled state between hyperfine spin 0 and +1 is also given .
In this paper, it is shown that the maximally entangled states of many particles in
spin-1 can be created by using a possibly simpler method You (2003); Kuang and
Ouyang (2000). Our main attention is paid in investigating how to generate the
atom-atom continuous-variable entangled states starting from coherent states in
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this system. Recently, such a continuous-variable entangled states have assumed
a key role in continuous variable quantum information processing Kuang and Lan
(2003).

2. MODEL AND SOLUTION

We consider a spin−1 condensate with N atoms, in which the spin states
|F = 1,MF = −1〉 and |F = 1,MF = +1〉 are coupled by a classical laser pulse.
The corresponding Hamiltonian takes the form H = H0 + Hint, where H0 and
Hint describe the condensates and the coupling between the external field and the
condensates, respectively. These terms for the condensate and the coupling are
given in the second quantized form You (2003); Pahlke and Mathis (2004); Law
et al. (1998)

H0 =
∑
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where M is the mass of the atom, �̂α(�x) (α = 0,±1) denotes the annihilation
operator for the MF = α component of a spin−1 field. The trapping potential VT

is assumed to be spin-independent. The interaction parameters are λ0 = 4πh̄2(a0 +
2a2)/(3M) and λ2 = 4πh̄2(a2 − a0)/(3M) with af (f = 0, 2) being the s-wave
scattering length for spin−1 atoms in the combined symmetric channel of total
spin f . For the two experimentally realized spinor condensate systems (23Na
and 87Rb), we have |λ2| � λ0. � is the coupling strength between the fields and
condensates. Under the single mode approximation in which atoms in different
spin state are described by the same wave function φ(�x) Yi et al. (2002), we
can expand the atomic field operator: �̂α ≈ âαφ(�x), such that the system can be
reduced to a three mode Hamiltonian

H = −λ′
2
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â
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†
+1â
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In deriving the above Hamiltonian, we have neglected some terms related to the
total number operator N̂ = â

†
+1â+1 + a

†
0 â0 + a

†
−1â−1, which is a constant operator.
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Here 2λ′
0 ≡ λ0

∫ |φ(�x)|4 d3x and âα is the annihilation operator associated with
the condensate mode satisfying the usual commutation relation

[
âκ , âγ

] = 0 and[
âκ , â

†
γ

] = δκγ . In case of no coupling, with the help of the method developed
in quantum optics, Law et al. have demonstrated that the ground state of the
system may be a entangled state depending on the interaction between atoms Law
et al. (1998). We note that the combined system cannot be solved analytically
because of the presence of the term Hint. In order to get insight into the dynamics
of such a three-component BEC system, some approximation is necessary. For
a weak nonlinear interaction or strong coupling, a closed analytical solution can
be obtained under the rotating wave approximation (RWA) Pahlke and Mathis
(2004); Kuang and Ouyang (2000).

To begin the analysis, we introduce a new pair of bosonic operators Â−1 and
Â+1 defined by You (2003); Kuang and Ouyang (2000)

â−1 = 1√
2

(Â−1 exp(i�t) + Â+1 exp(−i�t)) (4)

â+1 = 1√
2

(Â−1 exp(i�t) − Â+1 exp(−i�t)), (5)

which is similar to the dressed basis operator suggested by Zou et al. Here Â−1 and
Â+1 are slowly varying operators, which satisfy the same bosonic commutation
relation as â−1 and â+1. Then the Hamiltonian can be reexpressed as the form

H = −λ′
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We also find that the total number operator N̂ = Â
†
+1Â+1 + a

†
0 â0 + A

†
−1Â−1 is

still a conserved constant. H ′ includes the terms oscillating with the frequency 2�

and 4�. In the strong coupling limit, we can employ the RWA, where the quickly
oscillating terms of the form exp(±i2�t) and exp(±i4�t) can be approximated
by their zero average value. The work of ref. Pahlke and Mathis (2004) has pointed
out that the approximation is a good one under the condition � 
 Nλ′

2. The RWA
means H ′ = 0, so we obtain the approximation Hamiltonian
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It is also noticed in (8) that if the system is initially in the spin +1 and spin −1
subspace, the external field drives the system to remain the subspace. Since our
main interest is the dynamics of such a subspace, we can obtain the resulting
effective Hamiltonian

Heff = �(Â†
−1Â−1 − Â

†
+1Â+1) − λ′

2

2
(Â†

−1Â−1 − Â
†
+1Â+1)2, (9)

which is our starting Hamiltonian. In deriving (9), we also use the relation N̂ =
Â

†
+1Â+1 + A

†
−1Â−1 and drop the constant terms.

In order to demonstrate, how to create an entangled state between atoms, we
introduce two Fock spaces of (Â−1, Â+1) and (â−1, â+1) in which the bases are
defined by

|n)−1|m)+1 = |n,m) = 1√
n!m!

Â
†n
−1Â

†m
+1|0, 0), (10)

|n〉−1|m〉+1 = |n,m〉 = 1√
n!m!

â
†n
−1â

†m
+1 |0, 0〉, (11)

where n and m take nonnegative integers. Obviously, Heff is diagonal in the Fock
space of (Â−1, Â+1)

Heff|n,m) = E(n,m)|n,m), (12)

E(n,m) = �(n − m) − λ′
2(n − m)2. (13)

If we start with the BECs prepared in the Fock state |0, N〉, the state of the system
at later time t is determined by

|ψ(t)〉 = exp(−iHeff t)|0, N〉. (14)

In Pahlke and Mathis (2004), such a initial state was expanded in terms of the
eigenstates of operator of Hint. Here, note that, because |0, 0〉 = |0, 0), we can use
(4) and (5) to obtain the useful connection between the two Fock spaces
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such that the state at later time t can be reexpressed as

|ψ(t)〉 = 1

2N/2

m=N/2∑

m=−N/2

(
N

N/2 + m

)1/2

ei2λ′
2m

2t e−i2�mt

×(−1)N/2−m|N + m,N/2 − m), (16)

where
(
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)
is the binomial coefficient You (2003) (You, 2003). For simplicity,

we assume that N is even, and choose the parameters �, λ′ and a particular time t

to satisfy �t = nπ and 2λ′
2t = (2k + 1)π/2 with a resulting maximum entangled

N-GHZ state You (2003) (You, 2003)
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×Â
N/2−m

+1 (e−iπ/4 + eiπ/4(−1)N/2−m)|0, 0)

= 1√
2

(
e−iπ/4 â
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Thus the analytical expression is given for the generation of the maximally entan-
gled state between spin ±1. The similar procedure can be directly used to produce
the maximally entangled state with initial state |N, 0〉. Comparing to the method
suggested by Pahlke and Mathis (2004), this one may be more direct and simpler.

3. ATOM-ATOM CONTINUOUS-VARIABLE ENTANGLED STATES

In the above section, the initial states are assumed to be the Fock state or
the number state. As a simple extension, we now investigate the case where the
system is in the coherent states initially. Following Kuang and Lan (2003), we shall
describe a method to engineer atom-atom continuous-variable entangled states.
Consider two coherent states defined in Fock spaces of (Â−1, Â+1) and (â−1, â+1),
respectively,

|α−1, α+1〉 = Dâ−1 (α−1)Dâ+1 (α+1)|0, 0〉, (18)

|u−1, u+1) = DÂ−1
(u−1)DÂ+1

(u+1)|0, 0), (19)

where Dâi
(αi) and DÂi

(ui) are the usual displacement operators defined by
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(αi) = exp(αiâ

†
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DÂi
(ui) = exp(uiÂ

†
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i Âi). (21)



Quantum Entanglement of Many Particles in Spinor Bose–Einstein Condensates 1683

Due to |0, 0〉 = |0, 0), we can obtain a useful relation to connect |α−1, α+1〉 and
|u−1, u+1) by a simple calculation

|α−1, α+1〉 = |u−1, u+1), (22)

|α−1, α+1) = |u−1, u+1〉, (23)

where u−1 = (α−1 + α+1)/
√

2 and u+1 = (α−1 − α+1)/
√

2. Following the argu-
ments of Bose broken symmetry, we assume that the two condensates are initially
in the coherent states |α−1〉 and |α+1〉, which are eigenstates of â−1 and â+1,
respectively. Then the state at later time t can be given by

|ψ(t)〉 = exp(−iHeff t)|α−1, α+1〉
= exp(−iHeff t)|u−1, u+1). (24)

In order to simplify our the following analysis, we rewrite the Hamiltonian Heff =
2λ′

2Â
†
−1Â−1Â

†
+1Â+1 + �(Â†

−1Â−1 − Â
†
+1Â+1) and use a scaled time τ = λ′

2t and
a dimensionless parameter K = �/λ2, which leads the state to the simple form

|ψ(τ )〉 = e−1/2(|u−1|2+|u+1|2)
∞∑

n,m=0

1√
n!m!

un
−1u

m
+1

×e−iθn,mτ |n,m), (25)

where we have used a running frequency θn,m = nm + K(n − m). Since our main
interest is to create continuous-variable-type entangled states, we rewrite state (25)
as the following integral form

|ψ(τ )〉 =
∫ 2π

0

dφ−1

2π

∫ 2π

0

dφ+1

2π
f (φ−1, φ+1)

|u−1e
iφ−1 , u+1e

iφ+1 ), (26)

where the phase function is given by

f (φ−1, φ+1) = e−i(τθn,m+nφ−1+mφ+1). (27)

Equation (27) indicates that the state |ψ(τ )〉 is a continuous superposition sate of
two-mode product coherent states. From (25)–(27), we can see that the values of
the K parameter, which is the relative strength and the coupling and the interaction
between atoms, may affect the form of the state. Here our attention is paid to the
situation where K may take nonzero integers values. It follows from (25) that
|ψ(τ + 2π )〉 = |ψ(τ )〉. This means that the time evolution of the state (25) is a
periodic one with respect to the scaled time τ . On the other hand, suppose that the
scaled time τ takes its value in the following manner

τ = M

N
2π, (28)
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where M and N is mutually prime integers, a simple calculation gives

exp

(
i2π

M

N
θn+N,m+N

)
= exp

(
i2π

M

N
θn,m

)
, (29)

which means that the exponential phase function is a periodic function with respect
to both n and m with the same period N . If τ takes its values according to (28), the
state (25) can be decomposed into a discrete superposition state of coherent state

|ψ(τ = M

N
2π )〉 =

N∑

r=1

N∑

s=1

crs |u−1e
iφ−1,r , u+1e

iφ+1,s ), (30)

where the two running phase have the form

φ−1,r = 2π

N
r, φ+1,s = 2π

N
s(r, s = 1, 2, ..., N ). (31)

From Eqs. (25) and (30), we find the following equation to determine the coeffi-
cients crs

N∑

r,s=1

crs exp

(
−i

2π

N
(Mθn,m + nr + ms)

)
= 1. (32)

Carrying out summations over n and m in left hand side of the above equation
from 1 to N , and making using of the normalization condition

∑N
r,s = 1 crsc

∗
rs = 1,

we arrive at the explicit form of the coefficients crs

crs = 1

N2

N∑

r,s=1

exp

(
i
2π

N
(Mθn,m + nr + ms)

)
. (33)

It is straightforward to see that the discrete superposition state (30) is generally an
entangled coherent state with N2 independent product coherent states. As a specific
example of creating the continuous-variable-type entangled state, in what follows
we discuss the generation of the entangled state for the case of K = 101,N = 2
and M = 1. From Equation (33), we obtain the coefficients

c11 = c12 = c21 = −c22 = 1

2
, (34)

which result in the following entangled state

|ψ
(

τ = M

N
2π

) 〉
= 1

2
|u−1)|u−

+1) + 1

2
| − u−1)|u+

+1) (35)

where |u±
+1) are unnormalized atomic Schrödinger cat states, i.e., even and odd

coherent quantum superposition states defined by |u±
+1) = | − u+1) ± |u+1). The

degree of quantum entanglement of such an entangled state can be measured in
terms of concurrence Wang (2001); Hill and Wootters (1997) (Wang, 2001; Hill
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and Wootters, 1997). The corresponding concurrence for our case is given by
Kuang and Lan (2003) (Kuang and Zhou, 2003)

C =
√

[1 − exp(−4|u−1|2)][1 − exp(−4|u+1|2)]. (36)

If one turn to the Fock space of (â−1, â+1), he can find that the state becomes

|ψ
(

τ = M

N
2π

) 〉
= 1

2
(|α+1, α−1〉 + | − α+1,−α−1〉)

+1

2
(| − α−1,−α+1〉 − |α−1, α+1〉), (37)

which is an superposition of even-like and odd-like coherent states.

4. CONCLUSION AND REMARKS

In summary, we have presented a theoretical treatment of the proposal for
creating maximally entangled states of many particles in spin-1 Bose–Einstein
condensates (BECs) by applying a single atom Raman transition. It is shown that
in the strong coupling limit and certain initial states, the spin−1 system can be re-
duced to an effective two-component problem with the help of two simple dressed
operator. We also give a scheme to realize the atom-atom continuous-variable en-
tangled states in this system. Notice that an experimental result has been reported
recently for localizing the numbers of atoms at an individual lattice site Greiner et
al. (2002) (Greiner et al., 2002). In the experiment, the average occupations per
lattice site were around 1–3 atoms. As a simple example, we considered the inter-
esting case Wu and Yang (2003) (Wu and Yang, 2003) of N = 2 and constructed
the explicit entangled state. On the other hand, a scheme for demonstrating the
entanglement swapping in trapped Bose–Einstein condensates is proposed Dun-
ningham et al. (2002). Maybe, our method could find its applications and can be
useful in further works.
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